A genetic map of candidate genes and QTLs involved in tomato fruit size and composition.

نویسندگان

  • M Causse
  • P Duffe
  • M C Gomez
  • M Buret
  • R Damidaux
  • D Zamir
  • A Gur
  • C Chevalier
  • M Lemaire-Chamley
  • C Rothan
چکیده

In order to screen for putative candidate genes linked to tomato fruit weight and to sugar or acid content, genes and QTLs involved in fruit size and composition were mapped. Genes were selected among EST clones in the TIGR tomato EST database (http://www.tigr.org/tdb/tgi/lgi/) or corresponded to genes preferentially expressed in the early stages of fruit development. These clones were located on the tomato map using a population of introgression lines (ILs) having one segment of Lycopersicon pennellii (LA716) in a L. esculentum (M82) background. The 75 ILs allowed the genome to be segmented into 107 bins. Sixty-three genes involved in carbon metabolism revealed 79 loci. They represented enzymes involved in the Calvin cycle, glycolysis, the TCA cycle, sugar and starch metabolism, transport, and a few other functions. In addition, seven cell-cycle-specific genes mapped into nine loci. Fourteen genes, primarily expressed during the cell division stage, and 23 genes primarily expressed during the cell expansion stage, revealed 24 and 26 loci, respectively. The fruit weight, sugars, and organic acids content of each IL was measured and several QTLs controlling these traits were mapped. Comparison between map location of QTLs and candidate gene loci indicated a few candidate genes that may influence the variation of sugar or acid contents. Furthermore, the gene/QTL locations could be compared with the loci mapped in other tomato populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon.

Fruits represent an important part of the human diet and show extensive variation in size and shape between and within cultivated species. The genetic basis of such variation has been studied most extensively in tomato, where currently six quantitative trait loci (QTLs) involving these traits have been fine-mapped and the genes underlying the QTLs identified. The genes responsible for the clone...

متن کامل

Identification of the drought tolerance involved candidate genes in foxtail millet through an integrated meta-analysis approach

Drought stress is one of the most important factors limiting production in the agricultural sector. Due to the need to use smart agriculture adapted to climate change, the use of drought-tolerant alternative plants with high water use efficiency is of great importance. Foxtail millet (Setaria italica L.) is one of the important drought tolerant fodder and food grains in semi-arid regions. In th...

متن کامل

Identification of growth processes involved in QTLs for tomato fruit size and composition

Many quantitative trait loci (QTLs) for quality traits have been located on the tomato genetic map, but introgression of favourable wild alleles into large fruited species is hampered by co-localizations of QTLs with antagonist effects. The aim of this study was to assess the growth processes controlled by the main QTLs for fruit size and composition. Four nearly isogenic lines (NILs) derived f...

متن کامل

Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits

Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic...

متن کامل

Identification of QTLs for grain yield and some agro-morphological traits in sunflower (Helianthus annuus L.) using SSR and SNP markers

Many agriculturally important traits are complex, affected by many genes and the environment. Quantitative trait loci (QTL) mapping is a key tool for studying the genetic structure of complex traits in plants. In the present study QTLs associated with yield and agronomical traits such as leaf number, leaf length, leaf width, plant height, stem and head diameter were identified by using 70 recom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 55 403  شماره 

صفحات  -

تاریخ انتشار 2004